
Rotorcraft Aeroacoustics

An Introduction



Preliminary Remarks

• Rotorcraft Noise is becoming an area of 
considerable concern to the community.

• United States and most European 
countries have stringent limitations of 
acceptable noise levels.

• Any new design must be done with these 
limitations, to avoid unpleasant surprises 
during certification time. 





Sources of Noise
JPL Technical report 32-1462, 1970



Atmospheric Attenuation



Geometric Attenuation

• If the observer is 
far away from the 
noise source, the 
sound intensity 
decreases, 
roughly as the 
inverse of 
distance squared. Noise source with power W

Sphere of radius R

Intensity I= W/(4πR2)



Some Definitions
• Sound Pressure Level is measured in Decibels.
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Definitions
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Overall Sound Pressure Level, OASPL



Weighting

• A Weighting: Emphasizes sound 
frequencies that people here best.

• Perceived Noise Level (PNL) weighting: 
The most annoying frequencies are 
weighted more than others.



Typical dB Levels
• Hearing Threshold: 0 dBA
• Whisper : 20 dBA
• Quite Neighborhood: 40 dBA
• Normal Speech: 60 dBA
• Busy Office: 80 dBA
• Heavy Traffic: 100 dBA
• Discotheque 120 dBA



UH-1 Noise



Flight Tests



Why Flight Tests?
• Why Flight Test? Wind-tunnel tests provide precise, repeatable control of rotor 

operating conditions, but accurate noise measurements are difficult for several 
reasons: 

• Wall effects prevent the rotor wake from developing exactly as it does in free 
flight. This is crucial because an important contributor to rotor noise is the 
interaction between the rotor and its own wake (such as blade-vortex 
interaction). 

• In many wind-tunnel tests, the rotor test stand is not the same shape as the 
helicopter fuselage, hence aerodynamic interference between the test stand and 
rotor is different than in flight. 

• The wind-tunnel walls cause reflections that may corrupt the acoustic signals. 

• The wind tunnel has its own background noise, caused by the wind-tunnel drive 
and by the rotor test stand. (The YO-3A aircraft is actually quieter than many 
wind tunnels.) 

• The wind tunnel turbulence level is rarely the same as in flight. 

• The rotor is frequently trimmed differently in a wind-tunnel test than in flight. 



Wind Tunnel Tests

http://halfdome.arc.nasa.gov/research/IRAP-intro.html



Flight Test vs. Wind Tunnel Tests







Noise Abatement: Quite Approach



Lighthill’s Formulation



Kirchoff Formulation

f(x,y,z,t):Rotor Surface
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Ffowcs Williams-Hawkings Formulation



FWH Formulation (Continued)



FWH Formulation (Continued)

Stress Tensor that includes pressure,
Comes from a CFD analysis

Integration is over rotor surface

Mr is Mach number of a source on the blade along r
R: distance between point on the blade and observer

Ret: Retarded time, that is time at which noise left the rotor









BVI Noise Predictions with 
Computed Loads

Surface pressure input
From RFS2BVI – a code
Jointly developed at Ga Tech
And Boeing Mesa.



Coupling of Acoustics Solver to CFD Codes 
and Comprehensive Codes

Provides trim,
Blade dynamics,
Elastic deformations

Provides surface Pressures
As a function of time all
Over the blade surface









Validation of the Georgia Tech Solvers for HART-II BVI
• HART-II (Higher harmonic control Aeroacoustics Rotor Test) model

– 40% Mach scaled hingeless Bo105 model rotor (4 blades)
• NACA23012 airfoil with 5.4mm trailing edge tab of 0.8mm thickness
• Rectangular blade with -8 deg. linear twist (zero twist at 75%R)
• Radius: 2m, Chord length: 0.121m
• Precone anlge: 2.5 deg.

– Well-documented noise data are publicly available.
– Test condition includes a maximum BVI condition at a descent mode.

Baseline 
Test Condition

αshaft 5.3˚ aft.
µ, Mtip 0.15, 0.64



 CFD coupled to an elastic analysis (DYMORE) was carried out for baseline rotor. 

Coupled Analysis of the Baseline Rotor
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• BVI patterns over the 1st and 4th

quadrants are reasonably well 
captured.

• Noise was under-estimated and 
additional hot spot was appeared in 
front disk area.

Predicted and Measured BVI events
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Smart Rotor
• The Boeing 

Active Flap 
SMART Rotor

• Blind Runs prior 
to wind tunnel 
entry in early 
2008.



SMART Flap Description

37



SMART Rotor Results
• No Flap Deflection Case

This is likely due to 
Wind Tunnel wall 
reflections and is 
currently being 
researched in 
conjunction with 
NASA and AFDD



Concluding Remarks

• Outputs from CFD codes (or even lifting 
line/blade element theory) can be input 
into aeroacoustic codes, that solve the 
wave equation in integral form.

• Satisfactory agreement is obtained for 
thickness, lift, and shock noise sources 
with these approaches.
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