Rotorcraft Aeroacoustics

An Introduction



Preliminary Remarks

» Rotorcraft Noise is becoming an area of
considerable concern to the community.

* United States and most European
countries have stringent limitations of
acceptable noise levels.

* Any new design must be done with these
limitations, to avoid unpleasant surprises
during certification time.
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Sources of Noise
JPL Technical report 32-1462, 1970
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Atmospheric Attenuation

ATMOEPHERIC ATTERUATICHMN
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5. Standard Values of Atmospheric Absorption as a Function of Temperature
and Humidity for Use in Evaluating Aircraft Noise, SAE Aerospace Recom-
mended Practice ARP 866, New York, 1964.



Geometric Attenuation

* If the observer is
far away from the

- Sphere of radius R
noise source, the

sound intensity /
decreases,

roughly as the /

inverse of

distance Squared_ Noise source with power W

Intensity I= W/(47R?)



Some Definitions

« Sound Pressure Level is measured in Decibels.
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Definitions

Intensity :
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where is p density, ¢ 1s speed of sound



Overall Sound Pressure Level, OASPL
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Weighting

* A Weighting: Emphasizes sound
frequencies that people here best.

* Perceived Noise Level (PNL) weighting:
The most annoying frequencies are
weighted more than others.



Typical dB Levels

Hearing Threshold: 0 dBA
Whisper : 20 dBA

Quite Neighborhood: 40 dBA
Normal Speech: 60 dBA
Busy Office: 80 dBA

Heavy Traffic.: 100 dBA
Discotheque 120 dBA



UH-1 Noise
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Flight Tests




Why Flight Tests?

Why Flight Test? Wind-tunnel tests provide precise, repeatable control of rotor
operating conditions, but accurate noise measurements are difficult for several
reasons:

Wall effects prevent the rotor wake from developing exactly as it does in free
flight. This is crucial because an important contributor to rotor noise is the
interaction between the rotor and its own wake (such as blade-vortex
interaction).

In many wind-tunnel tests, the rotor test stand is not the same shape as the
helicopter fuselage, hence aerodynamic interference between the test stand and
rotor is different than in flight.

The wind-tunnel walls cause reflections that may corrupt the acoustic signals.

The wind tunnel has its own background noise, caused by the wind-tunnel drive
and by the rotor test stand. (The YO-3A aircraft is actually quieter than many
wind tunnels.)

The wind tunnel turbulence level is rarely the same as in flight.

The rotor is frequently trimmed differently in a wind-tunnel test than in flight.



Wind Tunnel Tests

http://halfdome.arc.nasa.gov/research/IRAP-intro.html



Fllght Test vs. Wlnd Tunnel Tests
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MNoise Footprints
RNM Prediction




Easeline Approach; 70 kis, 85 deg. nacelle; flare into IGE hover
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Noise Abatement: Quite Approach
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Lighthill's Formulation

B Idea: rearrange governing equation into a wave equation
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Kirchoff Formulation

> define generalized pressure perturbation:

= [p” >0 f(x,y,z,t):Rotor Surface
/ :] . o
0 f<0

» use generalized derivatives

» generalized wave equation is Kirchhoft governing equation:
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Ffowcs Williams-Hawkings Formulation

. . - y =0
B Embed exterior flow problem in p = “ T
unbounded space ]_ﬁ'ﬂ /< U.'
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FWH Formulation (Continued)

B Numerical solution of the FW-H equation

-2
o

5 / L P _
O p'(x.t)= r_'T[pG v o(f)] —_;—[ff_.:‘:{ ] +— [T”_H{.;‘ )]
ol X '

FAWZA

m Three source terms
» thickness source (monopole)
— requires blade geometry and kinematics
» loading source (dipole)
— requires blade geometry, kinematics, and surface loading
» quadrupole source

— requires flow field (i.e., TH} around the blade (volume integration)



FWH Formulation (Continued)

B Retarded-time solution to FW-H equation (neglecting quadrupole)
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where O=pv and L, = P

Stress Tensor that includes pressure,
Comes from a CFD analysis

Integration is over rotor surface

M. is Mach number of a source on the blade along r
R: distance between point on the blade and observer

Ret: Retarded time, that is time at which noise left the rotor



B Predictions accurately reflect design changes
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- with measured airloads -

B Amplitude, waveform, and spectra predicted well

B High temporal and spatial resolution of blade loads essential
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* microphone located upstream of rotor on advancing side, 25 deg. below TPP

w=0152, C,/o=007, decentcondition Ref: Brentner et al. 1994, Visintainer et al. 1993



BVI Noise Predictions with
Computed Loads
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From RFS2BVI — a code
Jointly developed at Ga Tech
And Boeing Mesa.



Coupling of Acoustics Solver to CFD Codes
and Comprehensive Codes

Provides trim, Iﬁ
Blade dynamics, Comprehensive Code

Elastic deformations l

Provides surface Pressures | CFD Flow Solver

As a function of time all
Over the blade surface l

| Acoustic Prediction |




B Prediction by approximate quadrupole calculation

» Measured blade pressures and computed tlow field used in prediction
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Validation of the Georgia Tech Solvers for HART-II BVI

« HART-Il (Higher harmonic control Aeroacoustics Rotor Test) model
— 40% Mach scaled hingeless Bo105 model rotor (4 blades)
« NACA23012 airfoil with 5.4mm trailing edge tab of 0.8mm thickness
* Rectangular blade with -8 deg. linear twist (zero twist at 75%R)
* Radius: 2m, Chord length: 0.121m
» Precone anlge: 2.5 deg.
— Well-documented noise data are publicly available.
— Test condition includes a maximum BVI condition at a descent mode.

Baseline
Test Condition
Olghaft 5.3° aft.
1, Mg, 0.15, 0.64




Coupled Analysis of the Baseline Rotor

= CFD coupled to an elastic analysis (DYMORE) was carr
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Predicted and Measured BVI events

BVI patterns over the 15t and 4th
quadrants are reasonably well
captured.

Noise was under-estimated and

additional hot spot was appeared in

front disk area.
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Smart Rotor

* The Boeing
ACtlve F | a p Boeing-SMART Rotor
S M A RT Roto r' NFAC 40- by 80-Foot

 Blind Runs prior
to wind tunnel
entry in early

2008 ] l Active 3

Trailing:Edge
| = Flap




SMART Flap Description

Connecting brackets

Reference line

Spherical joint
Prismatic joint

Universal joint

Revolute jOiIlt (prescribing flap rotation)

Revolute jOillt (spring and damper)

37



SMART Rotor Results

* No Flap Defl

)

essure (Pa

This is likely due to
Wind Tunnel wall
reflections and is
currently being
researched in
conjunction with

NASA and AFDD



Concluding Remarks

* Qutputs from CFD codes (or even lifting
line/blade element theory) can be input
iInto aeroacoustic codes, that solve the
wave equation in integral form.

« Satisfactory agreement is obtained for
thickness, lift, and shock noise sources
with these approaches.
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