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Hover Performance 
Prediction Methods

IV. Vortex Theory
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BACKGROUND

• Extension of Prandtl’s Lifting Line Theory
• Uses a combination of 

• Kutta-Joukowski Theorem
• Biot-Savart Law
• Empirical Prescribed Wake or Free Wake Representation of Tip Vortices and Inner Wake

• Robin Gray proposed the prescribed wake model in 1952.
• Landgrebe generalzied Gray’s model with extensive experimental data.
• Vortex theory was the extensively used in the 1970s and 1980s for rotor 

performance calculations, and is slowly giving way to CFD methods.  
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Background (Continued)

• Vortex theory addresses some of the drawbacks of combined blade 
element-momentum theory methods, at high thrust settings (high 
CT/σ).

• At these settings, the inflow velocity is affected by the contraction of 
the wake.

• Near the tip, there can be an upward directed inflow (rather than 
downward directed) due to this contraction, which increases the tip 
loading, and alters the tip power consumption. 
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Kutta-Joukowsky Theorem
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∆T = ρ (Ωr) Γ

∆Fx= ρ (V+v) Γ

Γ : Bound Circulation surrounding
the airfoil section.

This circulation is physically stored 
As vorticity in the boundary Layer
over the airfoil
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Representation of 
Bound and Trailing Vorticies

Since vorticity can not abruptly increase in space, trailing 
vortices develop. Some have clockwise rotation, 
others have counterclockwise rotation.

Ω
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Robin Gray’s Conceptual Model

Tip Vortex has a 
Contraction that can 
be fitted with 
an exponential curve 
fit.

Inner wake descends at a near 
constant velocity. It descends 
faster near the tip than at the 
root.



© L. Sankar                               Helicopter 
Aerodynamics 8

Landgrebe’s Curve Fit for the
Tip Vortex Contraction
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Radial Contraction
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Vertical Descent Rate

Ψv
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Landgrebe’s Curve Fit for
Tip Vortex Descent Rate
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θtwist,degrees: Blade twist=Tip Pitch angle – Root Pitch Angle
This quantity is usually negative.
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Circulation Coupled Wake Model

• Landgrebe’s earlier curve fits (1972) were based on the thrust 
coefficient, blade twist (change in the pitch angle between tip and 
root, usually negative).

• He subsequently found (1977) that better curve fits are obtained if 
the tip vortex trajectory is fitted on the basis of peak bound 
circulation, rather than CT/σ.
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Tip Vortex Representation in
Computational Analyses

• The tip vortex is a continuous helical structure.
• This continuous structure is broken into piecewise 

straight line segments, each representing 15 degrees 
to 30 degrees of vortex age.

• The tip vortex strength is assumed to be the 
maximum bound circulation. Some calculations 
assume it to be 80% of the peak circulation.

• The vortex is assumed to have a small core of an 
empirically prescribed radius, to keep induced 
velocities finite. 
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Tip Vortex Representation
Control Points on the Lifting Line where induced flow is calculated

15 
degrees

The x,y,z positions of the
End points of each segment
Are computed using
Landgrebe’s 
Prescribed Wake Model

Lifting Line
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Biot-Savart Law
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Biot-Savart Law (Continued)
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Overview of Vortex Theory Based Computations 
(Code supplied)

• Compute inflow using BEM first, using Biot-Savart law during 
subsequent iterations. 

• Compute radial distribution of Loads.
• Convert these loads into circulation strengths. Compute the 

peak circulation strength. This is the strength of the tip vortex.
• Assume a prescribed vortex trajectory. 
• Discard the induced velocities from BEM, use induced 

velocities from Biot-Savart law.
• Repeat until everything converges. During each iteration, 

adjust the blade pitch angle (trim it) if CT computed is too 
small or too large, compared to the supplied value.
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Free Wake Models
• These models remove the need for empirical 

prescription of the tip vortex structure.
• We march in time, starting with an initial guess for 

the wake.
• The end points of the segments are allowed to freely 

move in space, convected the self-induced velocity at 
these end points.

• Their positions are updated at the end of each time 
step.
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Free Wake Trajectories
(Calculations by Leishman)
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