Steady, Level Forward Flight

Inflow Model

Inflow Model

- To start this effort, we will need a very simple inflow model.
- A model proposed by Glauert is used.
- This model is phenomenological, not mathematically well founded.
- It gives reasonable estimates of inflow velocity at the rotor disk, and is a good starting point.
- It also gives the correct results for an elliptically loaded wing.

No net drag, or side forces. The drag forces on the individual blades Cancel each other out, when summed up.

Force Balance in Forward Flight

Simplified Picture of Force Balance

Total Velocity at the Rotor Disk

Total Velocity =

$$\sqrt{(V_{\infty} \cos \alpha_{TPP})^2 + (V_{\infty} \sin \alpha_{TPP} + v)^2}$$

Relationship between Thrust and Velocities

In the case of hover and climb, recall

Thrust = (mass flow rate) *change in induced velocity

$$T = \rho A (V+v) (2v)$$
Mass flow rate Change in
Induced Velocity

Glauert used the same analogy in forward flight.

In forward flight..

$$T = (2v) \rho A \sqrt{(V_{\infty} \cos \alpha_{TPP})^2 + (V_{\infty} \sin \alpha_{TPP} + v)^2}$$

This is a non-linear equation for induced velocity v, which must be iteratively solved for a given T, A, and tip path plane angle α_{TPP}

It is convenient to non-dimensionalize all quantities.

Non-Dimensional Forms

 $C_T = \frac{T}{\rho A (\Omega R)^2}$ $\frac{\text{Edgewise Freestream Component}}{\text{Tip Speed}} = \frac{V_{\infty} \cos \alpha_{TPP}}{\Omega R} \approx \frac{V_{\infty}}{\Omega R}$ Tip Speed is called advance ratio, μ Non - dimensinal inflow ratio, $\lambda_i = \frac{v}{\Omega R}$ Glauert equation in non - dimensional form becomes $C_{T} = 2\lambda_{i}\sqrt{\mu^{2} + (\mu \tan \alpha_{TPP} + \lambda_{i})^{2}}$

Approximate Form at High Speed Forward Flight

If advance ratio μ is higher than 0.2, and if tip path plane angle is small, μ far exceeds inflow ratio λ_i so that $C_T = 2\lambda_i \sqrt{\mu^2 + (\mu \tan \alpha_{TPP} + \lambda_i)^2}$

$$\cong 2\mu\lambda_i$$

$$\lambda_i = \frac{C_T}{2\mu}$$

In practice, advance ratio μ seldom exceeds 0.4, because of limitations associated with forward speed.

Variation of Non-Dimensional Inflow with Advance Ratio

Notice that inflow velocity rapidly decreases with advance ratio.