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Forward Flight
Integration of Sectional Loads

To get
Total Loads at the Hub
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Background

• In the previous sections, we discussed how to compute the angle of attack of a 
typical blade element.

• We also discussed how to compute lift, drag, and pitching moment coefficients.
• We also discussed how to compute sectional lift and drag forces per unit span.
• We mentioned that these loads must be rotated to get components normal to, 

and along reference plane.
• In this section, we discuss how to integrate these loads.
• In computer codes, these integrations are done numerically.
• Analytical integration under simplifying assumptions will be given here to 

illustrate the process.
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Assumptions for 
Analytical Integration
• c= constant (untapered rotor)
• v = constant (uniform inflow)
• Cd = constant
• Linearly twisted rotor
• No cut out, no tip losses.
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Blade Section

UT= Ωr+V∞cosαsinψ≈ Ωr+V∞sinψ
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Effective Angle of Attack
As discussed earlier,
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Some algebra first..
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Notice that we have first, second, and third harmonics present!
These fluctuations will be felt by the passengers/pilots as 
vibratory loads.



© Lakshmi Sankar 7

Thrust




















′= ∫ ∫

π

ψ
π

2

0 02
1 ddrLbT

R

Thrust is computed by integrating the lift radially to get
instantaneous thrust force at the hub, 
then averaging the thrust force over the entire rotor disk,
and multiplying the force per blade by the number of blades.

Computer codes will do the integrations numerically, without
any of the assumptions we had to make.
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Anlaytical Integration of Thrust
We can interchange the order of integration.

Integrate with respect to ψ first. Use the formulas such as
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Result of Azimuthal Integration
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Next perform radial integration and Normalize
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Note that we will get the hover expressions back 
if advance ratio µ is set to zero.
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Torque and Power

• We next look at how to compute the instantaneous torque and power 
on a blade.

• These are azimuthally-averaged to get total torque and total power.
• It is simpler to look at profile and induced components of torque are 

power separately.



© Lakshmi Sankar 12

Profile Drag
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We will assume chord c and drag coefficient Cd0 are constant.
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Integration of Profile Torque
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Profile Power
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Induced Drag

UT= Ωr+V∞cosα
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Induced Torque and Power
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Performing the analytical integration, TiP CC
i

λ=

This is a familiar result. Induced Power = Thrust times Induced Velocity!
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In-Plane Forces

• In addition to thrust, that act normal to the rotor disk (or along the z-
axis in the coordinate selected by the user), the blade sections 
generate in-plane forces.

• These forces must be integrated to get net force along the x- axis. This 
is called the H-force.

• These forces must be integrated to get net forces along the Y- axis. 
This is called the Y-force.

• These forces will have inviscid components, and viscous components.
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Origin of In-Plane Forces

β
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One source of in-plane forces is the tilting of the
Thrust due to the blade coning angle.

L’sinβ=L’β
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Origin of In-Plane Forces-II

V∞

A component of the free-stream flows along the blade, 
in the radial direction.  This causes radial skin friction forces. 
This is hard to quantify, and is usually neglected.

Radial flow causes radial
Skin friction forces
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Origin of In-Plane Forces III 

D=Di+D0

Sectional drag (which is made of inviscid induced drag, and viscous drag)
Can give rise to components along the X- direction (H-force), and
Y- direction (Y-Force).
Engineers are interested in both the instantaneous values (which determine
Vibration levels), as well as azimuthal averages (which determine force balance).
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Closed Form Expressions for 
CH and CY

• Under our assumptions of constant chord, linear twist, linear 
aerodynamics, and uniform inflow, these forces may be integrated 
radially, and averaged azimuthally.

• The H- forces and the Y- forces are non-dimensionalized the same 
way thrust is non-dimensionalized.

• Many text books (e.g. Leishman, Prouty) give exact expressions for 
these coefficients.
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Closed Form Expressions
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