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Hover Performance
Prediction Methods
Combined Blade Element-Momentum (BEM) Theory
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Drawbacks of Blade Element Theory
• It does not handle tip losses.
• It assumes that the induced velocity v is uniform.
• It does not account for swirl losses.
• The Predicted power is sometimes empirically 

corrected for these losses.
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Background
• Blade Element Theory has a number of 

assumptions.
• The biggest (and worst)  assumption is 

that the inflow is uniform. 
– 9% under-prediction of induced power results 

if we assume that the inflow is uniform
• In reality, the inflow is non-uniform.

– It may be shown from variational calculus that 
uniform inflow yields the lowest induced 
power consumption.
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Consider an Annulus of the rotor Disk

r

dr

Area = 2πrdr

Mass flow rate =2πrρ(V+v)dr

dT = (Mass flow rate) * (twice
the induced velocity at the 
annulus)
= 4πρr(V+v)vdr
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Typical Airfoil Section









Ω
+

=
r

V varctanφ

Ωr

V+v

Line of Zero Lift

θ

φ

α = θ − φ

Cl=a (θ −φ)

a : Lift curve slope



© L. Sankar                               Helicopter 
Aerodynamics 6

Blade Elements Captured by the Annulus

r

dr

Thrust generated by these 
blade elements: 
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Equate the Thrust for the Elements
from the
Momentum and Blade Element Approaches
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Total Inflow Velocity from Combined
Blade Element-Momentum Theory
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Numerical Implementation of Combined BEM 
Theory
• The numerical implementation is identical to classical blade element 

theory.
• The only difference is the inflow is no longer uniform. It is computed 

using the formula given earlier, reproduced below:
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Note that inflow is uniform if θ= CR/r . This twist is therefore 
called the ideal twist.
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Effect of Inflow on Power in Hover
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Ideal Rotor vs. Optimum Rotor

• Ideal rotor has a non-linear twist: θ= CR/r
• This rotor will, according to the BEM theory, have a uniform inflow, and the 

lowest induced power possible.
• The rotor blade will have very high local pitch angles θ near the root, which may 

cause the rotor to stall.
• Ideally Twisted rotor is also hard to manufacture. 
• For these reasons, helicopter designers strive for optimum rotors that minimize 

total power, and maximize figure of merit.
• This is done by a combination of twist, and taper, and the use of low drag airfoil 

sections.
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Optimum Rotor

• We try to minimize total power (Induced power + Profile 
Power) for a given T.

• In other words, an optimum rotor has the maximum figure 
of merit.

• From earlier work (see slide 72), figure of merit is maximized 
if                  is maximized.  

• All the sections of the rotor will operate at the angle of attack 
where this value of Cl and Cd are produced.

• We will call this Cl the optimum lift coefficient Cl,optimum .
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Optimum rotor (continued..)
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Variation of Chord for the Optimum Rotor

( ) drCcrbdT l ⋅⋅Ω⋅⋅= 2

2
1 ρ

dT = (Mass flow rate) * (twice the induced velocity at the annulus)
= 4πρr(v)vdr

Compare these two. Note that Cl is a constant (the optimum value).

It follows that 
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Planform of Optimum RotorRoot
Cut out

Tip

Chord is proportional to 1/r

Such planforms and twist distributions are hard to manufacture, and are optimum
only at one thrust setting. 

Manufacturers therefore use a combination of linear twist, and linear variation 
in chord  (constant taper ratio) to achieve optimum performance.

r=R r



© L. Sankar                               Helicopter 
Aerodynamics 15

Accounting for Tip Losses

• We have already accounted for two sources of performance loss-non-
uniform inflow, and blade viscous drag.

• We can account for compressibility wave drag effects and associated 
losses, during the table look-up of drag coefficient.

• Two more sources of loss in performance are tip losses, and swirl.
• An elegant theory is available for tip losses from Prandtl.
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Prandtl’s Tip Loss Model
Prandtl suggests that we multiply the sectional inflow by 
a function F, which goes to zero at the tip, and unity in the interior.
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When there are infinite number of blades, 
F approaches unity, there is no tip loss.
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Incorporation of Tip Loss Model in BEM 

All we need to do is multiply the lift due to inflow by F.

r

dr
Thrust generated by the annulus: 

dT =
= 4πρrF(V+v)vdr
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Resulting Inflow (Hover)
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