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Hover Performance
Prediction Methods

II. Blade Element Theory
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Preliminary Remarks

• Momentum theory gives rapid, back-of-
the-envelope estimates of Power.

• This approach is sufficient to size a rotor 
(i.e. select the disk area) for a given power 
plant (engine), and a given gross weight.

• This approach is not adequate for 
designing the rotor.
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Drawbacks of Momentum Theory

• It does not take into account
– Number of blades
– Airfoil characteristics (lift, drag, angle of zero 

lift)
– Blade planform (taper, sweep, root cut-out)
– Blade twist distribution
– Compressibility effects
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Blade Element Theory
• Blade Element Theory rectifies many of these 

drawbacks. First proposed by Drzwiecki in 1892.
• It is a “strip” theory. The blade is divided into a 

number of strips, of width ∆r.
• The lift generated by that strip, and the power 

consumed by that strip, are computed using 2-D 
airfoil aerodynamics.

• The contributions from all the strips from all the 
blades are summed up to get total thrust, and 
total power.
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Typical Blade Section (Strip)
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Typical Airfoil Section
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Sectional Forces
Once the effective angle of attack is known, we can look-up 
the lift and drag coefficients for the airfoil section at that strip.

We can subsequently compute sectional lift and drag forces 
per foot (or meter) of span. 
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These forces will be normal to and along 
the total velocity vector.

UT=ωr

UP=V+v
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Rotation of Forces 
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Approximate Expressions

• The integration (or summation of forces) 
can only be done numerically.

• A spreadsheet may be designed. A 
sample spreadsheet is being provided as 
part of the course notes.

• In some simple cases, analytical 
expressions may be obtained.
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Closed Form Integrations
• The chord c is constant. Simple linear twist.
• The inflow velocity v and climb velocity V are small. 

Thus, φ << 1. 
• We can approximate cos(φ ) by unity, and approximate 

sin(φ ) by ( φ ).
• The lift coefficient is a linear function of the effective 

angle of attack, that is,  Cl=a(θ−φ) where a is the lift 
curve slope. 

• For low speeds, a may be set equal to 5.7 per radian.
• Cd is small. So, Cd sin(φ) may be neglected.
• The in-plane velocity Ωr is much larger than the normal 

component V+v over most of the rotor.
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Closed Form Expressions
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Linearly Twisted Rotor: Thrust
Here, we assume that the pitch angle varies as

θ = +E Fr
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Linearly Twisted Rotor
Notice that the thrust coefficient is linearly proportional to  the 
pitch angle θ  at the 75% Radius. 

This is why the pitch angle is usually defined at 75% R 
in industry.
The expression for power may be integrated in a similar 
manner, if the drag coefficient Cd is assumed to be a 
constant, equal to Cd0. 
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Closed Form Expressions for
Ideally Twisted Rotor
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Same as linearly
Twisted rotor!
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Figure of Merit according to Blade 
Element Theory
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High solidity (lot of blades, wide-chord, large blade area) leads to higher
Power consumption, and lower figure of merit.

Figure of merit can be improved with the use of low drag airfoils.
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Average Lift Coefficient
• Let us assume that 

every section of the 
entire rotor is 
operating at an 
optimum lift 
coefficient.

• Let us assume the 
rotor is untapered.
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Rotor will stall if average lift coefficient exceeds 1.2, or so.

Thus, in practice, CT/σ is limited to 0.2 or so.
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Optimum Lift Coefficient in Hover
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