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Hover Performance 
Prediction Methods

I. Momentum Theory
Also called

Actuator Disk Model
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Background
• Developed for marine propellers by 

Rankine (1865), Froude (1885).
• Extended to include swirl in the slipstream 

by Betz (1920)
• This theory can predict performance in 

hover, and vertical climb.
• We will look at the general case of vertical 

climb, and extract hover as a special 
situation with zero climb velocity. 
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Assumptions
• Momentum theory concerns itself with the 

global balance of mass, momentum, and 
energy.

• It does not concern itself with details of the 
flow around the blades.

• It gives a good representation of what is 
happening far away from the rotor.

• This theory makes a number of simplifying 
assumptions. 
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Assumptions (Continued)

• Rotor is modeled as an actuator disk 
which adds momentum and energy to the 
flow.

• Flow is incompressible.
• Flow is steady, inviscid, irrotational.
• Flow is one-dimensional, and uniform 

through the rotor disk, and in the far wake.
• There is no swirl in the wake. 
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Control Volume is a Cylinder
V

Disk area A

Total area S
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Conservation of Mass
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Conservation of Mass through the 
Rotor Disk

Flow through the rotor disk = 
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Thus v2=v3=v

There is no velocity jump across the rotor disk
The quantity v is called induced velocity at the rotor disk
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Global Conservation of Momentum
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Mass flow rate through the rotor disk times
Excess velocity between stations 1 and 4
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Conservation of Momentum at the 
Rotor Disk

V+v

V+v

p2

p3

Due to conservation of mass across the
Rotor disk, there is no velocity jump.

Momentum inflow rate = Momentum outflow rate

Thus, Thrust T = A(p3-p2)
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Conservation of Energy
Consider a particle that traverses from
Station 1 to station 4

We can apply Bernoulli equation between
Stations 1 and 2, and between stations 3 
and 4.
Recall assumptions that the flow is 
steady, irrotational, inviscid. 
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From an earlier slide # 36,  Thrust equals mass flow rate 
through the rotor disk times excess velocity 
between stations 1 and 4 

( ) 4vv+= VAT ρ
Thus, v = v4/2



© L. Sankar                               
Helicopter Aerodynamics

12

Induced Velocities

V

V+v

V+2v

The excess velocity in the
Far wake is twice the induced
Velocity at the rotor disk.

To accommodate this excess
Velocity, the stream tube 
has to contract.
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Induced Velocity at the Rotor Disk
Now we can compute the induced velocity at the 
rotor disk in terms of thrust T.

T = Mass flow 
rate through the 
rotor disk * 
(Excess velocity 
between 1 and 
4).

T = 2 ρ A (V+v) v

A
TV
ρ222
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There are two solutions. The – sign 
Corresponds to a wind turbine, where energy 
Is removed from the flow.    v is negative.

The + sign corresponds to a rotor or
Propeller where energy is added to the flow.
In this case, v is positive.
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Induced velocity at the rotor disk
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Ideal Power Consumed by the Rotor
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Summary
• According to momentum theory, the downwash 

in the far wake is twice the induced velocity at 
the rotor disk.

• Momentum theory gives an expression for 
induced velocity at the rotor disk.

• It also gives an expression for ideal power 
consumed by a rotor of specified dimensions.

• Actual power will be higher, because momentum 
theory neglected many sources of losses-
viscous effects, compressibility (shocks), tip 
losses, swirl, non-uniform flows, etc.
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Figure of Merit
• Figure of merit is 

defined as the ratio of 
ideal power for a rotor 
in hover obtained 
from momentum 
theory and the actual 
power consumed by 
the rotor.

• For most rotors, it is 
between 0.7 and 0.8.
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Some Observations on 
Figure of Merit

• Because a helicopter spends considerable 
portions of time in hover, designers 
attempt to optimize the rotor for hover 
(FM~0.8).

• We will discuss how to do this later.
• A rotor with a lower figure of merit 

(FM~0.6) is not necessarily a bad rotor.
• It has simply been optimized for other 

conditions (e.g. high speed forward flight).
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Example #1

• A tilt-rotor aircraft has a gross weight of 
60,500 lb. (27500 kg).

• The rotor diameter is 38 feet (11.58 m).
• Assume FM=0.75, Transmission 

losses=5%
• Compute power needed to hover at sea 

level on a hot day.



© L. Sankar                               
Helicopter Aerodynamics

20

Example #1 (Continued)
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Alternate scenarios
• What happens on a hot day, and/or high 

altitude?
– Induced velocity is higher.
– Power consumption is higher

• What happens if the rotor disk area A is 
smaller?
– Induced velocity and power are higher.

• There are practical limits to how large A 
can be.
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Disk Loading
• The ratio T/A is called disk loading.
• The higher the disk loading, the higher the 

induced velocity, and the higher the power.
• For helicopters, disk loading is between 5 and 

10 lb/ft2 (24 to 48 kg/m2).
• Tilt-rotor vehicles tend to have a disk loading of 

20 to 40 lbf/ft2. They are less efficient in hover.
• VTOL aircraft have very small fans, and have 

very high disk loading (500 lb/ft2).



© L. Sankar                               
Helicopter Aerodynamics

23

Power Loading

• The ratio of thrust to power T/P is called 
the Power Loading.

• Pure helicopters have a power loading 
between 6 to 10 lb/HP.

• Tilt-rotors have lower power loading – 2 to 
6 lb/HP.

• VTOL vehicles have the lowest power 
loading – less than 2 lb/HP.
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Non-Dimensional Forms
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Non-dimensional forms..
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Accounting for Viscous Losses

• Helicopter blades are made of airfoil 
sections.

• The blades experience a viscous resistive 
force, called viscous drag or “profile drag”.

• We will use the symbol D` to represent the 
drag per unit span, e.g. lbf/per foot of span 
or Newtons per meter of the span.
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Accounting for viscous losses
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Ωr
Drag force per unit span D`

Power consumed by this drag force per unit span = D` (Ωr)

We are neglecting the induced velocity v.

Induced velocity is small, of order of 10 to 70 feet/sec whereas (Ωr) is
Of order of hundreds of feet/sec.

v



Accounting for Viscous losses
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From classical aerodynamics,    drag coefficient is given by

Ωr
Drag force per unit span D`
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Power consumed by Viscous Drag

• Every foot of span (or meter of span) will 
consume power equal to D` times (Ωr)

• If we integrate to D` times (Ωr) from root to 
tip, we can get total power per blade.

• If we multiply the result by b, where b is 
the symbol for the total number of blades, 
we get the total power due to viscous 
drag.

• We call this “Profile Power”
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Power Consumed by Viscous 
Drag
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We have assumed rectangular blades, and a constant value of Cd



Profile Power
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The first term on the right side is blade area (bcR) 
Divided by disk area.

We call this ratio solidity, σ.

Helicopters typically have a solidity between 0.05 and 0.1

That is, less than 10% of the disk is blades, rest is air.



Total Power

• If we add the ideal power we looked 
earlier, to the profile power, we get, in 
hover,
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Total Power

• We may have other sources of losses (e.g. 
swirl) that we alluded to earlier. 

• To account for these, the induced power is 
multiplied by a factor k, approximately 
1.15.
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